
Phalanx: An Flexible and Extensible

Assembly/Field Evaluation Kernel

For Handling Complexity in Simulation

Sandia is a multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Department of Energy

under Contract DE-AC04-94AL85000

Roger Pawlowski

Trilinos User Group Meeting

November 4, 2009

SAND2009-7348P

Acknowledgements

• Phalanx Contributors

– Eric Phipps

– Carter Edwards

– Pat Notz

• Consulting

– Roscoe Bartlett

– Pavel Bochev

– Dennis Ridzal

– Andy Salinger

Motivation

• Assembly for general FE/FV PDE discretizations gets quite
complex when supporting arbitrary equation sets.

• Issues to Address:

– Compact and uniform user interface for extensibility

– Flexibility to easily swap equation sets, material models and
material properties while maintaining efficiency

– Support for user defined data types

– Support for embedded technology

– Good OO-design/Code reuse

• Generalization and unification of:

– Expression Manager in SIERRA/Aria

– Variable Manager in Charon

Overview

• Phalanx is a local field evaluation kernel designed for assembly
of arbitrary equation sets (i.e. evaluating residuals and
Jacobians).
– Equation sets, material models might change drastically

• Decompose a complex problem into a number of simpler
problems with managed dependencies
– Supports rapid development and extensibility

– Consistent evaluation of fields as dependencies change

• Phalanx supports arbitrary user defined data types and
evaluation types through template metaprogramming.
– Flexibility for direct integration with user applications

– Provides extensive support for embedded technology such as
automatic differentiation for sensitivities and uncertainty quantification.

• Efficient evaluation of fields using worksets and memory
management for efficient use of cache.

Complex Dependency Chains

Continuity

Momentum

Energy

Species

• Complexity spirals when we add new equations, operators, use subsets, etc…

– Swap eqns/models at runtime (no complex if/switch statements)

• Automatically adjust the dependency tree

• Separate fields so that they are evaluated only once (density)

Idea: Evaluators (Expressions)

Field Manager

void registerEvaluator(TemplateMgr&)

void registerEvaluator<Residual>(...)

void registerEvaluator<Jacobian>(...)

Gather DOFs

Scatter Residual

Solver Navier Stokes Equation Residuals

Physics/Equation Set

Species Conservation Equation Residual

Energy Conservation Equation Residual

Density

Heat Capacity

Diffusion Coefficients

Viscosity

Material Property Library

Evaluators can be registered anytime before postRegistrationSetup()

Interpolation

Node->QP

FEM

Evaluator Anatomy

@ integration points

@ integration points

@ basis points

@ integration points

@ node points

@ integration points

• Evaluates one or more

fields

• Depends on one or

more fields

• CTOR: Size the fields

• Setup Method: Get

pointers to memory

• Evaluate Method:

Evaluate the field(s)

• Intrepid package does

the final integration

Idea: Chain of Evaluators

• Phalanx FieldManager will

– Determine which evaluators to call

– The order to call the evaluators for consistency

– Perform the evaluation on a workset

field_manager.evaluateFields<Jacobian>(workset);

field_manager.evaluateFields<Residual>(workset);

Evaluators: Simple for Users

• We must simplify interfaces for analysts to implement

– Don’t expose entire equation set to users

– Hide advanced c++ (i.e. templating) from analysts looking to

add new equations and material models

– Don’t have to know about derivatives/solver techniques

PHX_EVALUATOR_CLASS(EnergyFlux)

Field< MyVector<ScalarT> > flux;

Field< ScalarT > density;

Field< ScalarT > k;

Field< MyVector<ScalarT> > grad_temp;

int points_per_cell;

PHX_EVALUATOR_CLASS_END

PHX_EVALUATE_FIELDS(EnergyFlux,workset)

{

int size = workset.num_cells * points_per_cell;

for (int i = 0; i < size; ++i)

flux[i] = -density[i] * k[i] * grad_temp[i];

}

Skipped CTOR (field sizing),

Setup (get pointers to memory)

Workset/Memory Management

• Break work up into worksets

– Chunk of cells in finite element/volume calculation

• Memory allocation of all fields of all scalar

types for an evaluation type is done in a

single contiguous array!

– Possibly fit all fields in cache

– User defined allocators (template parameter in

Traits)

• Leverage BLAS in evaluators

What does this buy you?

• Consistent Evaluations: Dependencies are ensured
to be up-to-date

• Evaluate each field once per cell
– No recalculation of temporaries

• Flexible and Extensible: each simpler piece becomes
an extension point that can be swapped out with
different implementations

• Easier to craft code because each piece is simpler,
more focused and easier to test in isolation

• Minimal interface: isolate users from bulk of assembly
process

• Efficient: use of worksets
– Block evaluations Blas

– Possibly fits into cache

Embedded Technology!!!

Scalar Types

double• Residual

• Jacobian

• Tangent

• Stochastic Galerkin Residual

• Stochastic Galerkin Jacobian

Concept: Evaluation Types

Sacado::FAD::DFad<double>

Sacado::FAD::DFad<double>

Sacado::PCE::OrthogPoly<double>

Sacado::Fad::DFad< Sacado::PCE::OrthogPoly<double> >

Field Manager is templated on Evaluation Type

DFad<double>

Transformational PDE Assembly

using Agile Components

PCE
Adjoint

Hessian

Field Manager

GatherSolution

Density

FE Interpolation
Compute Derivs

Scatter Resids

Flux

Tangent
Jacobian

Residual

Evaluators Templated
on Evaluation Type:

<EvalT>

Eqn Residuals

Packages / Libraries:

Sacado: Automatic Differentiation

Phalanx: Field Manager, Evaluators

Intrepid: Compatible Discretizations

iTAPS: Mesh interface

Rapid, Transformational, Scalable

Template Specializations:

(Generic)

Scalar Type Default

DFad<double>

double

PCEAdjoint
DFad< DFad<double> >

Take Home

Message:

1. Reuse the

same code

base

2. Never write

Jacobians

manually

Example Traits
struct MyTraits : public PHX::TraitsBase {

typedef double RealType;

typedef Sacado::Fad::DFad<double> FadType;

struct Residual { typedef RealType ScalarT; };

struct Jacobian { typedef FadType ScalarT; };

typedef boost::mpl::vector<Residual, Jacobian> EvalTypes;

// Residual (default scalar type is RealType)

typedef boost::mpl::vector< RealType,

MyVector<RealType>,

MyMatrix<RealType>

> ResidualDataTypes;

// Jacobian (default scalar type is Fad<double>)

typedef boost::mpl::vector< FadType,

MyVector<FadType>,

MyMatrix<FadType>

> JacobianDataTypes;

// Maps the key EvalType a vector of DataTypes

typedef boost::mpl::map<

boost::mpl::pair<Residual, ResidualDataTypes>,

boost::mpl::pair<Jacobian, JacobianDataTypes>

>::type EvalToDataMap;

Declare Scalar Types

Declare Evaluation Types

Declare Residual

Data Types

Declare Jacobian

Data Types

Evaluation Types

Maps Evaluation Types

to Data Types

Multidimensional Arrays
(Shards – C. Edwards next)

PHX_EVALUATOR_CLASS(EnergyFlux)

Field< MyVector<ScalarT> > flux;

Field< ScalarT > density;

Field< ScalarT > k;

Field< MyVector<ScalarT> > grad_temp;

int points_per_cell;

PHX_EVALUATOR_CLASS_END

PHX_EVALUATE_FIELDS(EnergyFlux,workset)

{

int size = workset.num_cells * points_per_cell;

for (int i = 0; i < size; ++i)

flux[i] = -density[i] * k[i] * grad_temp[i];

}

PHX_EVALUATOR_CLASS(EnergyFlux)

MDField<ScalarT,Cell,QuadPoint,Dim> flux;

MDField<ScalarT,Cell,QuadPoint> density;

MDField<ScalarT,Cell,QuadPoint> dc;

MDField<ScalarT,Cell,QuadPoint,Dim> grad_temp;

int num_qp;

int num_dim;

PHX_EVALUATOR_CLASS_END

PHX_EVALUATE_FIELDS(EnergyFlux,workset)

{

int num_cells = workset.num_cells;

for (int cell = 0; cell < num_cells; ++cell)

for (int qp = 0; qp < num_qp; ++qp)

for (int dim = 0; dim < num_dim; ++dim)

flux(cell,qp,dim) =

- density(cell,qp) * dc(cell,qp) * grad_temp(cell,qp,dim);

}

Optional compile time checked

access

In closing...

• This package is very advanced
– C++ templates and template metaprogramming

– One developer will need to know templates to set up

– Everyone else only needs to write evaluators (very minimal
template code)

• Think hard before using
– This is a hammer, its not right for every PDE code,

especially if your equation set/models doesn’t change

• “My understanding keeps changing...” – Andy
Salinger

• Don’t hesitate to ask for help!

• http://trilinos.sandia.gov/packages/phalanx: a very
detailed users guide.

http://trilinos.sandia.gov/packages/phalanx

Phalanx Summary

• Assembly kernel for cell based discretization of PDEs

• Breaks complex problems into simpler pieces

– Automatically manage complex dependency chains

– Easier to unit test

– Don’t expose fully complex system to the user – only expose exactly
what they need to write a user defined function

• Supports rapid development and extensibility

– Easily swap evaluation routines

– Easily swap dependency trees

• Arbitrary user defined data types and evaluation types: C++
Template metaprogramming

• Embedded technology support

